As digitalisation and automation progress, the integration of Artificial Intelligence (AI) is an important step for the flat glass industry to optimise processes, reduce energy consumption and CO2 emissions and increase international competitiveness.
When analysing errors in manufacturing processes, using AI and more specifically Deep Learning technologies makes for rapid and precise analysis and interpretation of ever more complex, extensive datasets. The objective: fewer defects and less downtime, producing the same product in less time while using less energy and resources.
The theme “AI in machine technology” is also an important topic at glasstec 2024, the leading trade fair not only for glass producers but also for the machine manufacturers involved. On behalf of Messe Düsseldorf the author spoke to VDMA’s Glass Technology Forum and renowned industry players in the run-up to the fair.
Artificial Intelligence generally denotes the ability of a machine or computer system to perform tasks that would usually require human intelligence – such as learning and problem solving, language recognition and reproduction, image recognition and in future maybe also something like “intuition” from experience. How to possibly attribute this type of intelligence to a machine was already researched by the British mathematician and IT specialist Alan Turing back in the 1950s. His “Turing Test” aims to assess the ability of a machine to show human-like behaviour or to demonstrate human-like intelligence. The basic idea: man and machine interact based on text from separate rooms, and the human does not know whether they are communicating with a machine or another human being. If the human cannot reliably decide, the Turing Test is considered as passed. This test still serves as factual criterion to assess human-like interaction of machines today and as a basis for numerous discussions about the development of AI systems and also their ethical implications.